Fourier Series

FOURIER ANALYSIS

Fourier analysis is a tool that changes a time domain signal to a frequency domain signal and vice versa

FOURIER SERIES

- Every composite periodic signal can be represented with a series of sine and cosine functions.
- The functions are integral harmonics of the fundamental frequency " f " of the composite signal.
- Using the series we can decompose any periodic signal into its harmonics

NEED OF FOURIER SERIES

- To convert a signal into sinusoidal, we require a mathematical formula .
- Fourier series provide such a tool, which can convert a signal into sinusoidal.

DIRICHLET CONDITIONS

- A periodic signal $x(t)$, has a Fourier series if it satisfies the following conditions:

1. $\mathrm{x}(\mathrm{t})$ is absolutely integrable over any period, namely

$$
\int^{a+T}|x(t)| d t<\infty, \quad \forall a \in \square
$$

2. $x(t)$ has only a finite number of maxima and minima over any period
3. $x(t)$ has only a finite number of discontinuities over any period

$$
\begin{aligned}
& \text { TRIGNOMETRIC FOURIER SERIES } \\
& g(t)=a_{0}+a_{1} \cos \omega_{0} t+a_{2} \cos 2 \omega_{0} t+a_{3} \cos 3 \omega_{0} t+ \\
& \ldots \ldots \ldots \ldots \ldots+a_{(n-1)} \cos (n-1) \omega_{0} t+a_{n} \cos n \omega_{0} t \\
& +b_{1} \sin \omega_{0} t+b_{2} \sin 2 \omega_{0} t+b_{3} \sin 3 \omega_{0} t+ \\
& \text {... }+b_{n} \sin n \omega_{0} t
\end{aligned}
$$

$$
\begin{aligned}
a_{n} & =\frac{2}{T} \int_{0}^{T} g(t) \cos n \omega_{0} t d t \\
b_{n} & =\frac{2}{T} \int_{0}^{T} g(t) \sin n \omega_{0} t d t \\
a_{0} & =\frac{1}{T} \int_{0}^{T} g(t) d t
\end{aligned}
$$

EXAMPLES OF SIGNALS AND THE

Copyright $\$$ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Time domain

$$
A_{0}=0 \quad A_{n}=\left[\begin{array}{rl}
\frac{4 A}{n \pi} & \text { for } n=1,5,9, \ldots \\
-\frac{4 A}{n \pi} & \text { for } n=3,7,11, \ldots
\end{array} \quad B_{n}=0\right.
$$

$$
s(t)=\frac{4 A}{\pi} \cos (2 \pi f)-\frac{4 A}{3 \pi} \cos (2 \pi 3 / t)+\frac{4 A}{5 \pi} \cos (2 \pi 5 f)-\frac{4 A}{7 \pi} \cos (2 \pi 7 f)+\cdots \cdots
$$

Frequency domain

SAWTOOTH SIGNAL

Copyright \bigcirc The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Time domain

$$
A_{\mathrm{o}}=\mathrm{O} \quad A_{n}=0 \quad B_{n}=\left[\begin{array}{rl}
\frac{2 A}{n \pi} & \text { for } n \text { odd } \\
-\frac{2 A}{n \pi} & \text { for } n \text { even }
\end{array}\right.
$$

$$
s(t)=\frac{2 A}{\pi} \sin (2 \pi f)-\frac{2 A}{2 \pi} \sin (2 \pi 2 \pi)+\frac{2 A}{3 \pi} \sin (2 \pi 3 f)-\frac{2 A}{4 \pi} \sin (2 \pi 4 f)+\cdots \cdot
$$

Frequency domain

COMPLEX FOURIER SERIES

$$
\begin{aligned}
& g(t)=\sum_{n=-\infty}^{+\infty} C_{n} e^{j m_{0} t} \\
& C_{n}=\frac{1}{T} \int_{0}^{T} g(t) e^{-j n n_{0} t} d t
\end{aligned}
$$

FOURIER TRANSFORM

- Fourier Transform gives the frequency domain of a nonperiodic time domain signal

EXAMPLE OF A FOURIER TRANSFORM

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Time domain

$S(f)=A \tau \frac{\sin (\pi \tau f)}{\pi \tau f}$

Frequency domain

FOURIER TRANSFORM

$$
\begin{aligned}
& F[g(t)]=G(f)=\int_{-\infty}^{+\infty} g(t) e^{-j o t} d t \\
& F^{-1}[G(f)]=g(t)=\int_{-\infty}^{+\infty} G(f) e^{+j o t} d f
\end{aligned}
$$

PROPERTIES OF FT

Operation	Time Function	Fourier Transform
Linearity	$a f_{1}(t)+b f_{2}(t)$	$a F_{1}(\omega)+b F_{2}(\omega)$
Time shift	$f\left(t-t_{0}\right)$	$F(\omega) e^{-j \omega t_{0}}$
Time scaling	$f(a t)$	$\frac{1}{\|a\|} F\left(\frac{\omega}{a}\right)$
Time transformation	$f\left(a t-t_{0}\right)$	$\frac{1}{\|a\|} F\left(\frac{\omega}{a}\right) e^{-j \omega t_{0} / a}$
Duality	$F(t)$	$2 \pi f(-\omega)$
Frequency shift	$f(t) e^{j \omega_{0} t}$	$F\left(\omega-\omega_{0}\right)$
Convolution	$f_{1}(t)^{*} f_{2}(t)$	$F_{1}(\omega) F_{2}(\omega)$
	$f_{1}(t) f_{2}(t)$	$\frac{1}{2 \pi} F_{1}(\omega)^{*} F_{2}(\omega)$
Differentiation	$\frac{d^{n}[f(t)]}{d t^{n}}$	$(j \omega)^{n} F(\omega)$
	$(-j t)^{n} f(t)$	$\frac{d^{n}[F(\omega)]}{d \omega^{n}}$
Integration	$\int_{-\infty}^{t} f(\tau) d \tau$	$\frac{1}{j \omega} F(\omega)+\pi F(0) \delta(\omega)$
-	-	-

TIME LIMITED AND BAND LIMMITED

SIGNALS

- A time limited signal is a signal for which the amplitude $s(t)=0$ for $t>T_{1}$ and $t<T_{2}$
$\odot \mathrm{A}$ band limited signal is a signal for which the amplitude $\mathrm{S}(\mathrm{f})=0$ for $\mathrm{f}>\mathrm{F}_{1}$ and $\mathrm{f}<\mathrm{F}_{2}$

PARSEVAL'S ENERGY THEOREM

- Mathematical technique to find out the energy of a signal in frequency domain by using Fourier transform.
- When we know the Fourier transform of signal, its energy can be calculated without converting into time domain.

$$
E=\int_{-\infty}^{+\infty}|G(f)|^{2} d f
$$

- It is also called Rayleigh's energy theorem.
- Proof: Energy of a signal in time domain

$$
\begin{aligned}
& E=\int_{-\infty}^{+\infty}|g(t)|^{2} d t \\
& E=\int_{-\infty}^{+\infty}|g(t) \cdot g(t)| d t
\end{aligned}
$$

- Inverse FT

$$
g(t)=\int_{-\infty}^{+\infty} G(f) e^{j \omega t} d f
$$

- By putting g(t)

$$
E=\int_{-\infty}^{+\infty}|g(t)|\left\{\int_{-\infty}^{+\infty} G(f) e^{j \omega t} d f\right\} d t
$$

- By interchanging the order of integration

$$
E=\int_{-\infty}^{+\infty}|G(f)| d f \int_{-\infty}^{+\infty} g(t) e^{j \omega t} d t
$$

- By the concept of complex conjugate

$$
G^{*}(f)=G(-f)=\int_{-\infty}^{+\infty} g(t) e^{j \omega t} d t
$$

- Where $G^{*}(f)$ is complex conjugate of $G(f)$, so by putting

$$
\begin{aligned}
E & =\int_{-\infty}^{+\infty}\left|G(f) \cdot G^{*}(f)\right| d f \\
E & =\int_{-\infty}^{+\infty}|G(f)|^{2} d f
\end{aligned}
$$

ENERGY SPECTRAL DENSITVY

- Defined as energy per unit bandwidth

$$
E S D=|G(f)|^{2}
$$

- Let signal $\mathrm{g}(\mathrm{t})$ is passed with a low pass filter

$$
y(t)=g(t) * h(t)
$$

- Taking FT

$$
Y(f)=G(f) \cdot H(f)
$$

- FT of LPF lies between $-f_{m}$ to $_{\mathrm{m}}^{\mathrm{m}}$ with amplitude one

$$
\begin{aligned}
& E=\int_{-\infty}^{+\infty}|Y(f)|^{2} d f \\
& E=\int_{-\infty}^{+\infty}|G(f) \cdot H(f)|^{2} d f \\
& E=\int_{-f_{m}}^{+f_{m}}|G(f)|^{2} d f \\
& E=|G(f)|^{2} \int_{-f_{m}}^{+f_{m}} d f \\
& E=|G(f)|^{2} \cdot 2 f_{m} \\
& \frac{E}{2 f_{m}}=|G(f)|^{2} \Longrightarrow \frac{E}{B}=|G(f)|^{2} \\
& E S D=|G(f)|^{2}
\end{aligned}
$$

POWER SPECTRAL DENSITY

- Defined as power per unit bandwidth.
- Let the $\mathrm{g}(\mathrm{t})$ is defined as

$$
g(t)=\left\{\begin{array}{cc}
g(t) & -\frac{T}{2} \leq t \leq+\frac{T}{2} \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
P=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{+T / 2}|g(t)|^{2} d t
$$

$$
P=\lim _{T \rightarrow \infty} \frac{1}{T}\left[\int_{-\infty}^{-T / 2}|g(t)|^{2} d t+\int_{-T / 2}^{-0}|g(t)|^{2} d t\right]
$$

$$
+\lim _{T \rightarrow \infty} \frac{1}{T}\left[\int_{0}^{+T / 2}|g(t)|^{2} d t+\int_{T T / 2}^{\infty}|g(t)|^{2} d t\right]
$$

- But we know $g(t)$ is defined for only $-T / 2$ to +T/ 2
- So the power content between $-\infty$ to $-\mathrm{T} / 2$ and $+\mathrm{T} / 2$ to ∞ is zero.

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\infty}^{+\infty}|g(t)|^{2} d t
$$

- By Parseval energy theorem

$$
\begin{gathered}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\infty}^{+\infty}|G(f)|^{2} d f \\
P=\lim _{T \rightarrow \infty} \frac{1}{T}|G(f)|^{2} \int_{-\infty}^{+\infty} d f
\end{gathered}
$$

- But if $\mathrm{g}(\mathrm{t})$ is defined between $-\mathrm{T} / 2<=\mathrm{t}<=+\mathrm{T} / 2$ Then $G(f)$ must be lies in the range of f_{m} to f_{m}

$$
\begin{gathered}
\frac{P}{\int_{-\infty}^{+\infty} d f}=\lim _{T \rightarrow \infty} \frac{1}{T}|G(f)|^{2} \\
\operatorname{PSD}[S(f)]=\lim _{T \rightarrow \infty} \frac{|G(f)|^{2}}{T}
\end{gathered}
$$

